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7 Abstract 

8 It is well-documented that marsh periwinkles (Littoraria irrorata) consume and inhabit smooth 
9 cordgrass (Spartina alterniflora), but their interactions with big cordgrass (Spartina 

cynosuroides) remain unknown. Plant communities in mesohaline marshes will change as sea-
11 level rise shifts species from salt-intolerant (e.g., S. cynosuroides) plants to salt-tolerant (e.g., S. 
12 alterniflora) ones. Therefore, understanding how L. irrorata interacts with different habitats 
13 provides insight into this species’ generalist nature and allows us to predict the potential impacts 
14 of changing plant communities on L. irrorata. We show, for the first time, that L. irrorata 

inhabits, climbs, and grazes S. cynosuroides. We compared both habitats and found snails were 
16 larger, plant tissue was tougher, and sediment surface temperatures were higher in S. alterniflora 
17 than S. cynosuroides. Snails had greater survivorship from predators in S. cynosuroides than in S. 
18 alterniflora. Further, snails grazed S. cynosuroides more than S. alterniflora, evidenced by a 
19 greater number of radulation scars. Despite these differences, snail densities were equal between 

habitats suggesting functional redundancy between S. cynosuroides and S. alterniflora for L. 
21 irrorata. Our results indicate L. irrorata is a habitat generalist that uses both S. alterniflora and 
22 S. cynosuroides, which may allow it to gain an ecological foothold as sea-level rises. 
23 
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Introduction 

Tidal marshes cover approximately 45,000 km2 globally (Greenberg et al. 2006) and contribute 

ecologically and economically to human well-being by providing erosion and flood control, 

recreation, improved water quality, carbon sequestration, and nursery habitat for commercially 

important fishes and invertebrates (Boesch et al. 2000; Beck et al. 2001; Shepard et al. 2011). 

There are 16,000 km2 of tidal marshes in North America alone, with high concentrations on the 

South Atlantic coast and Gulf of Mexico (Greenberg et al. 2006). The Chesapeake Bay in the 

United States contains an estimated 1,240 km2 of tidal marshes, with brackish marshes making 

up one-third of this area (Stevenson et al. 2000). A mesohaline marsh is a type of estuarine 

brackish marsh where saline and fresh waters mix, leading to salinities between 5 and 18 ppt on 

average (Odum 1988). Despite their abundance, mesohaline marshes are relatively understudied 

compared to their polyhaline counterparts (i.e., salt marshes, 18-30 ppt), especially regarding 

their flora and fauna. 

Mesohaline marshes tend to have higher plant diversity than that of polyhaline marshes 

(Odum 1988) because a greater abundance of vascular plant species can tolerate lower salinities 

(Anderson et al. 1968; Wass and Wright 1969; Perry and Atkinson 1997). On the Atlantic coast 

of the United States, the lowest elevations of mesohaline marshes are dominated by two co-

occuring species: the smooth cordgrass, Spartina alterniflora, and the big cordgrass, Spartina 

cynosuroides. Both species have similar growth forms, with leaves growing from a single tall 

stem (culm) and rhizamatous belowground biomass (Silberhorn 1992; McHugh and Dighton 

2004). However, in the Chesapeake Bay region, S. cynosuroides ranges from 2 to 4 meters tall, 

whereas S. alterniflora ranges from 1 to 2 meters tall (Silberhorn 1992). Both species are flood 

tolerant, however S. alterniflora has a wider salt tolerance than S. cynosuroides (Penfound and 
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Hathaway 1938). Spartina alterniflora commonly dominates polyhaline marsh communities due 

to its ability to outcompete salt-sensitive species, however it can also thrive in lower salinity 

marshes (Stribling 1997; White and Alber 2009). In contrast, S. cynosuroides prefers oligohaline 

(0.5-5 ppt) environments but can tolerate freshwater to mesohaline conditions (Odum et al. 1984; 

Constantin et al. 2019). The co-occurrence of these plant species creates distinct habitat types 

with qualities that may attract similar fauna to each. 

The marsh periwinkle (Littoraria irrorata) is an abundant and herbivorous gastropod 

found in tidal marshes along the Gulf of Mexico and Atlantic coast of the United States. It 

thrives in salinities ranging from 5 to 30 ppt; however, it can survive shorter periods of time (less 

than a week) in salinities from 0 to 5 ppt (Crist and Banta 1983; Henry et al. 1993). It is a critical 

component of saltmarsh food webs (McCann et al. 2017) as prey for fishes and crustaceans 

(Hamilton 1976) and as a consumer of live and dead S. alterniflora, marsh sediment, algae, 

diatoms, nematodes, foraminifera, ostracods, mites, copepods, and other microorganisms 

(Alexander 1979). Littoraria irrorata climbs plant stems to avoid rising tides and aquatic 

predators (Warren 1985; Carroll et al. 2018), as well as to cultivate fungus colonies on plant 

leaves for consumption (Silliman and Zieman 2001; Silliman and Newell 2003). At 

extraordinarily high densities, this fungal farming by L. irrorata can lower aboveground biomass 

of S. alterniflora (Silliman and Zieman 2001). During low tide, some snails move back to the 

sediment surface to feed and to avoid the threat of desiccation (Bingham 1972). 

Littoraria irrorata is frequently studied in polyhaline marshes and therefore associated 

primarily with S. alterniflora (e.g., Hamilton 1976; Silliman and Zieman 2001; Silliman and 

Newell 2003; Deis et al. 2017; Zengel et al. 2017; Rietl et al. 2018). In the mesohaline marshes 

of the Chesapeake Bay, we have observed L. irrorata in both S. alterniflora and S. cynosuroides 
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habitats. Here, we document, for the first time to our knowledge, the ecological use of S. 

cynosuroides by L. irrorata in a mesohaline marsh. Our goals were to compare the 

environmental characteristics, predation pressure, palatability of plant tissue, and algal-food 

availability between S. alterniflora and S. cynosuroides habitats in relation to L. irrorata use. We 

expected that L. irrorata climbed S. cynosuroides to avoid predation, similar to its behavior in S. 

alterniflora. However, we hypothesized that S. alterniflora was more palatable than S. 

cynosuroides, as the use of S. alterniflora as a preferred food source for L. irrorata is well-

documented (e.g. Hendricks et al. 2011; Sieg et al. 2013). We also expected the difference in 

plant height between S. alterniflora and S. cynosuroides to influence the foraging behavior of L. 

irrorata. For example, taller S. cynosuroides may limit access to leaves or light penetration to the 

substrate, thus decreasing benthic diatom growth, an additional food for L. irrorata (Alexander 

1979).  

Methods 

Study Site 

Our study focused on the mesohaline marsh surrounding Taskinas Creek (37° 24' 54.79'' N; 76° 

42' 52.74'' W; Fig. 1), within the Chesapeake Bay watershed in James City County, Virginia, 

USA. Access to this York River State Park site was possible through the Chesapeake Bay 

National Estuarine Research Reserve of Virginia (CBNERR-VA), which maintains marsh 

monitoring stations within the York River estuary. Taskinas Creek has an average salinity of 6 to 

7 ppt (VECOS Database, accessed: July 16, 2019) with a semidiurnal tidal range of 0.85 m on 

average. The low marsh exists below the mean high-water level and is dominated by distinct, 

side-by-side, monotypic stands of S. alterniflora and S. cynosuroides, with L. irrorata found in 
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both habitats. The high marsh above the mean high-water level is made up of mostly salt hay 

(Spartina patens) and saltgrass (Distichlis spicata). 

Snail & Environmental Data 

We established two, 20-meter transects one meter from the creek bank, one in a monotypic stand 

of S. alterniflora, and the other in a monotypic stand of S. cynosuroides. Along each transect, we 

haphazardly placed twenty 0.0625 m² quadrats (total of forty quadrats) to estimate stem heights 

and densities. Plant height was measured for all live plants within quadrats and the tallest plant 

from each quadrat was clipped from the base and stored in a -80°C freezer to await plant trait 

analysis. The second tallest plant from each quadrat was clipped from the base and processed 

with a penetrometer immediately for tissue toughness (see below). To evaluate L. irrorata 

densities in S. alterniflora and S. cynosuroides, thirty 0.0625 m² quadrats per habitat (total of 

sixty quadrats) were haphazardly sampled and all snails within each quadrat were counted. In a 

separate sampling effort, adult snails were haphazardly collected along each transect within each 

habitat (S. alterniflora, n=184; S. cynosuroides, n=128) and measured in the lab for height and 

width using digital calipers to determine average snail size. Height was measured from the tip of 

the shell spire to the bottom of the shell aperture. Width was measured diagonally from the 

widest part of the shell aperture to the body whorl. To assess leaf damage from snail grazing, 

fifteen 0.0625 m² quadrats were haphazardly placed within each habitat type. In each quadrat, 

five plants were chosen at random to measure heights and to count radulations. In addition, four 

Onset HOBO pendants were deployed from July 11th to August 6th, 2018 to measure light 

intensity and temperature in S. alterniflora and S. cynosuroides habitats, with two pendants per 

habitat. To estimate benthic algal biomass, a benthic chlorophyll a sample was taken to a depth 
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126 of 3 mm from the sediment surface (volume = 0.29 mL) and placed in a cooler of ice. The 

127 samples were then stored in a -80°C freezer to await further processing. Chlorophyll a was 

128 extracted in 10 mL of 90% acetone for 24 hours and filtered through a 0.45μm Acrodisc with 

129 absorbance measured at 630, 647, 664, 665, and 750 nm against a 90% acetone blank (Brush MJ, 

130 personal communication). An additional acidification step allowed for phaeophytin correction. 

131 Chlorophyll a concentration was calculated using the following equation where V is the volume 

132 of extractant in mL (10 mL), SA is the core area in cm2 (0.95 cm2), and L is the light path length 

133 in cm (1 cm, UV-1601 Shimadzu UV Visible) (Lorenzen 1967; Jeffrey and Welschmeyer 1997). 

134 
26.7 × (λ665 − λ665acid) V 1 mg 10000 cm2 

(mg ∙ m−2) =Chla × × ×
(L) SA 1000 μg 1m2 

135 

136 Predation Assays 

137 To examine predation pressure between the two habitats and the effect of distance from the creek 

138 bank, three predation trials were conducted on successive tides. Each trial consisted of tethers in 

139 both habitats positioned 1 m, 2 m, and 3 m from the creek. Each tether consisted of one adult 

140 snail attached with super glue to a 15 cm segment of 1.8 kg monofilament fishing line tied to a 

141 30 cm clear plastic rod. For each distance from the creek bank, 8 snails were tethered and 

142 separated by at least 0.5 m from each other for a total of 24 snails per habitat. This design 

143 allowed us to assess predation pressure in relation to distance from the creek, as predators of L. 

144 irrorata arrive with the incoming tide. Within the vegetated habitats, each rod was placed near a 

145 single plant stem and pushed into the sediment until the tether and snail were flush with the 

146 sediment surface. The tether was long enough to allow snails to climb the adjacent plant stem to 

147 avoid predation, but short enough that they could not get tangled with any other nearby 

148 vegetation. The tethers were deployed at low tide and were retrieved after 24 hours. 

6 



 

  

  

    

     

    

      

      

       

   

     

     

    

    

  

   

  

  

   

    

      

  

  

 

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Plant Traits 

To determine tissue toughness of fresh leaves, we used a penetrometer consisting of an insect pin 

attached to a plastic tray which was suspended above leaf material (Pennings et al.1998; Siska et 

al. 2002). A plastic cup was placed on the tray and dry sand was added to the cup until the pin 

pierced the tissue. The mass of sand in kilograms required to pierce the tissue was indicative of 

leaf toughness. This was then converted into a measure of force in newtons (N). Toughness was 

assessed for each leaf and an average was determined for each plant. Frozen plants were freeze 

dried in a Labconco Freezone system for 72 hours. Dry mass was recorded, and plants were 

ground to a fine powder using a mini Wiley mill fitted with a 40-mesh sieve. Total soluble 

protein content was measured using a modified Bradford assay with absorbance read at 595 nm 

and compared to a Bovine Serum Albumin (BSA) standard curve. Total phenolic concentrations 

were determined using a modified Folin-Ciocalteu assay with absorbance measured at 760 nm 

and compared to a ferulic acid standard curve. Carbon [C] and Nitrogen [N] content were 

analyzed using a Fisher Scientific FlashEA system. 

Statistical Analysis 

All statistical analyses were conducted using R software (Version 3.5.1, R Core Team, 2018). 

The response variables snail height and width, C:N, %N, tissue toughness, benthic chlorophyll a, 

temperature, and light intensity were analyzed using one-way ANOVAs with habitat type as the 

factor, while protein content and phenolic concentration were analyzed with ANCOVA, with 

plant biomass serving as the covariate. For all responses the assumptions of normality and 

homogeneity of variance were tested; if data did not meet these assumptions, responses were 
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transformed via Box-Cox transformations. For ANCOVA, the assumptions of linearity and 

equality of slopes were also tested. If there was no relationship between the response and the 

covariate, the covariate was removed from the model. Predation data was analyzed with a 

binomial logistic regression, while generalized linear models with a negative binomial 

distribution were used for radulations and snail count data. To account for differences in size 

between S. alterniflora and S. cynosuroides, the covariate, plant height, was included in the 

analysis of radulation data. 

Results 

Snail & Environmental Data 

Habitat type had no significant effect on snail density (p=0.43), with an average of 42.15 ± 8.15 

standard error (se) snails per m2 across habitats. However, habitat type did influence snail height 

(p << 0.01; S. alterniflora, mean=19.27 ± 0.15 se; S. cynosuroides, mean=18.40 ± 0.10 se) and 

width (p << 0.01; S. alterniflora, mean=14.94 ± 0.11 se; S. cynosuroides, mean=14.35 ± 0.08 se), 

with larger snails found in S. alterniflora. One snail from S. alterniflora habitat was excluded 

from analysis as an outlier due to small size. There was a wider distribution of both heights and 

widths in S. alterniflora than S. cynosuroides (Online Resource 1). Habitat type also had a 

significant effect on the number of radulations (p=0.05, Fig. 2), with more found on S. 

cynosuroides than on S. alterniflora. There was no significant effect of the covariate, plant 

height, on the number of radulations (p=0.84). Additionally, habitat type had a significant effect 

on daily temperature (p=0.03, Online Resource 2a), with higher temperatures in S. alterniflora 

(Online Resource 2a), but no significant effect on daily light intensity (p=0.86, Online Resource 
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2b). Benthic chlorophyll a was similar between habitats (p = 0.69), for a combined mean of 

36.19 ± 4.07 se mg/m2. 

Predation Assays 

Trial number had no significant effect on survival (p=0.67), therefore data from each trial was 

pooled. We found that habitat type (p=0.02, Fig. 3a) had a significant effect on survival, with 

greater survival in S. cynosuroides than in S. alterniflora. In addition, distance from the creek 

also had a significant effect on survival (p=0.01, Fig. 3b), with the highest survival farthest from 

the creek (3 m away), and the lowest survival closest to the creek (1 m away). 

Plant Traits 

Plant type had a significant effect on both tissue toughness (p << 0.01, Fig. 4a) and total soluble 

protein content (p < 0.01, Fig. 4b), with the covariate, biomass, having no significant effect on 

protein content (p=0.41). Spartina cynosuroides had higher protein content while S. alterniflora 

tissues were tougher. In addition, plant type had no significant effect on either %N (p=0.32; S. 

alterniflora, mean=0.89 ± 0.03 se; S. cynosuroides, mean=0.94 ± 0.04 se) or C:N molar ratio 

(p=0.59; S. alterniflora, mean=54.25 ± 2.00 se; S. cynosuroides, mean=52.56 ± 2.33 se). Plant 

type and biomass had a significant interactive effect on total phenolic concentration (p=0.03, Fig. 

5). Due to this significant interaction, main effects were not explored further. 

Discussion 

We demonstrate, for the first time to our knowledge, that L. irrorata will use S. 

cynosuroides in addition to S. alterniflora as habitat. Between the two habitats, we found 
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significant differences in the size of L. irrorata, environmental characteristics, predation 

pressure, and palatability of plant tissue. In S. alterniflora habitat, we found significantly larger 

snail height and width, higher daily surface temperatures, and tougher plant tissues. In S. 

cynosuroides habitat, we found significantly higher plant protein content, safer habitat from 

predation, and a higher number of radulations. Despite these differences, snails were seen 

climbing the stems of both S. alterniflora and S. cynosuroides at high tide and densities were 

equal between habitats. This suggests that, from a population level, snails use both habitats 

similarly. Thus, from the perspective of L. irrorata, S. cynosuroides and S. alterniflora habitats 

may be functionally redundant. Research is needed in additional marshes to confirm these 

results, as this study was conducted in a single marsh. 

Predation pressure on L. irrorata was higher in S. alterniflora than in S. cynosuroides, 

indicating that S. cynosuroides serves as better predation refuge for snails. One possible 

explanation for this trend is plant size. Spartina cynosuroides is much larger, in terms of biomass 

and height, than S. alterniflora and potentially provides more structure to impede incoming 

predators of L. irrorata, such as the blue crab (Callinectes sapidus), during tidal flooding. 

Although we found greater survivorship in S. cynosuroides than in S. alterniflora, snail densities 

did not differ between the habitats, suggesting that there is limited predator control of snail 

populations or that the effects of predation are ultimately offset by recruitment. While L. irrorata 

larvae settle over wide portions of the marsh, they do not move far from their settlement site over 

the course of their life (Hamilton 1978; Vaughn and Fisher 1992). Distance from the creek 

enhanced L. irrorata survival in both habitats, likely because plant shoots impede benthic 

predators such as crabs (Schindler et al. 1994; Lewis and Eby 2002). This indicates that snails 

are most susceptible to predators at the edge and that the interior provides a predation refuge, a 
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trend seen for L. irrorata in mixed marshes of J. roemarianus and S. alterniflora (Hughes 2012) 

and for other mollusks in tidal marshes (ribbed mussels, Geukensia demissa, Lin 1989, coffee-

bean snails, Melampus bidentatus, Johnson and Williams 2017). 

We found that benthic chlorophyll a concentration was similar between the two habitats, 

which means that each habitat could provide comparable levels of algae for L. irrorata to 

consume. Although it is well-documented that L. irrorata will graze and fungal farm on S. 

alterniflora (Vaughn and Fisher 1992; Silliman and Zieman 2001), we found that they will also 

graze S. cynosuroides, as it had more radulations than S. alterniflora. In our study, S. 

cynosuroides had higher forage quality than S. alterniflora, as indicated by weaker tissues and 

higher protein content. Further, S. alterniflora produces Dimethylsulphoniopropionate (DMSP), 

a known deterrent to herbivores, whereas S. cynosuroides does not (Otte et al. 2004). The lack of 

DMSP production and higher forage quality of S. cynosuroides may be responsible for 

promoting more grazing on S. cynosuroides. Despite our finding that L. irrorata grazes more on 

S. cynosuroides than S. alterniflora, L. irrorata is a generalist feeder (Alexander 1979) and both 

plants may ultimately serve as a source of food for L. irrorata. 

Our work contributes to the evidence that L. irrorata is a habitat generalist that will use 

marsh vegetation other than S. alterniflora as habitat (Lee and Silliman 2006; Hendricks et al. 

2011; Hughes 2012; Sieg et al. 2013; Kicklighter et al. 2018). For instance, L. irrorata will use 

Juncus roemarianus as a refuge from predation over S. alterniflora in mixed-species marshes 

(Hughes 2012), however it remains unknown whether J. roemarianus can also serve as a food 

source. Littoraria irrorata prefers to inhabit and consume S. alterniflora over Phragmites 

australis, Bolboschoenus robustus (Kicklighter et al. 2018), Batis maritima, Borrichia 

frutescens, Sarcocornia sp., and Iva frutescens (Sieg et al. 2013), due to its low chemical defense 
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and greater palatability (Hendricks et al. 2011; Sieg et al. 2013; Kicklighter et al. 2018). Further, 

both P. australis and B. robustus were better at inhibiting fungal growth than S. alterniflora, 

leading to a greater density of L. irrorata on S. alterniflora stems than these other species 

(Kicklighter et al. 2018). 

Our results have implications for periwinkles adjusting to changing plant communities in 

mesohaline marshes due to sea-level rise. Mesohaline marsh vegetation is resilient to acute 

pulses of salinity from spatial and temporal changes in tidal salinity gradients (Jarrell et al. 2016; 

Li and Pennings 2018), however, chronic saline presses from sea-level rise could result in a shift 

in plant communities in mesohaline marshes from salt-intolerant (e.g., S. cynosuroides) to salt-

tolerant plant species (e.g., S. alterniflora). In marshes where S. cynosuroides and S. alterniflora 

co-occur, this disparity in salt tolerance could lead to monotypic stands of S. alterniflora, as salt-

water intrusion via sea-level rise drives salinity above the threshold for S. cynosuroides. Our 

results suggest that L. irrorata is a habitat generalist, one that will use both S. alterniflora and S. 

cynosuroides as functionally redundant habitats, which may allow it to gain an ecological 

foothold in brackish marshes as sea-level rises. 
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466 Figure Captions 
467 

468 
469 Fig. 1 a) Inset map of the state of Virginia. Boxed area indicates study region and arrow points to 
470 the Chesapeake Bay. b) Enlarged map of study region. Diamond is the location of Taskinas 
471 Creek with dotted rectangular region representing York River State Park 
472 
473 
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474 
475 Fig. 2 Mean number of radulations per S. alterniflora and S. cynosuroides habitat. Error bars 
476 represent standard error 
477 
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Fig. 3 Mean percent snail survival by a) S. alterniflora and S. cynosuroides habitat types and b) 
distance from the creek bank (habitats combined). The italicized letters above bars indicate the 
significant differences between levels 
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Fig. 4 Mean a) tissue toughness in Newtons and b) total soluble protein content in milligrams per 
gram dry weight for S. alterniflora and S. cynosuroides tissues. Error bars represent standard 
error 
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Fig. 5 Interaction of biomass and mean total phenolic concentration for a) S. alterniflora and b) 
S. cynosuroides. Trend lines represent smoothed, linear regression lines 
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496 
497 Online Resource 1 Size-frequency plots for shell height and width of L. irrorata found in a) S. 
498 alterniflora and b) S. cynosuroides habitats 
499 

22 



 

  
    

    
  

500 
501 Online Resource 2 Mean a) daily temperature and b) daily light intensity in S. alterniflora and 
502 S. cynosuroides habitats from July 12, 2018 through August 5, 2018. Error bars represent 
503 standard error 
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